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Abstract Many important real-world optimization problems are stochastic, non-linear, non-
differentiable, and non-convex. To solve these difficult problems, practitioners often
rely on black-box optimization methods which make no or few assumptions of internal
problem structure. The Dividing Rectangles (DIRECT) algorithm has proven popular
for deterministic, low-dimensional black-box problems. The algorithm does not require
calculation of a gradient, is relatively simple (having only one tuning parameter),
and is widely applicable, requiring only that the function be Lipschitz continuous.
We describe a new DIRECT algorithm to support stochastic simulation optimization
that retains the global convergence properties of the original. Our algorithm iterates
between searching for new solutions and reducing the variance of existing solutions
using Bayesian sample information. The algorithm intelligently allocates available
computational resources using the Optimal Computing Budget Allocation (OCBA)
methodology, and includes several heuristic mechanisms which in practice increase the
likelihood of quickly obtaining desirable solutions. In computational experiments, we
find this new algorithm can provide better performance than the only other known
modification of DIRECT for stochastic problems. We provide the results of a realistic
application where we use the algorithm to design a wireless mesh network supporting
uncertain traffic demands.

Keywords Dividing Rectangles; DIRECT; stochastic optimization; simulation optimization;
direct search; optimal computing budget allocation; OCBA

1. Introduction

Many real-world optimization problems have no analytically tractable closed-form solution
and can only be calculated using simulation. Applications include determining optimal vehic-
ular traffic management policies, finding ideal characteristics for a weapons platform within
a high-fidelity combat simulation, and designing a wireless communications network to best
support unpredictable customer demand. These problems may be stochastic, non-linear,
non-differentiable, and non-convex. We consider problems of the form:

min
x∈Ω

f(x) =E[F (x,ω)] (1)

where the domain Ω = {x ∈ Rn : l ≤ x ≤ u}, l and u are the respective lower and upper
bounds for each variable x, and ω represents the randomness or noise present in the function.
We are unable to exactly compute the underlying function f(·), and so we must estimate
using the computable sample performance estimate F (·, ω).

Such problems can be difficult to solve for several reasons. First, the lack of differentia-
bility and convexity removes the possibility of using exact gradient methods to find good
solutions and prove optimality; thus one must often settle for “good enough” solutions. Sec-
ond, running the simulation itself may be computationally intensive, and there may only be
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a finite computational budget available. As Fu et al. [16] poignantly note, “The key difficulty
in [stochastic] simulation optimization involves a trade-off between allocating computational
resources for searching the solution space versus conducting additional function evaluations
for better estimating the performance of current promising solutions. . . The fundamental
tradeoff between search and estimation becomes especially pronounced when the cost of
simulation is expensive.” In contrast, deterministic methods may focus computational effort
entirely on search, as the value of each solution – once calculated via simulation or other
means – is known with certainty.

Because of these difficulties, practitioners often rely on black-box optimization methods
to obtain solutions. These methods require little or no knowledge of the structure of the
underlying problem, and generally have few tuning parameters, making them popular for
real-world applications. The Dividing Rectangles (DIRECT ) algorithm of Jones et al. [29]
is a popular black-box optimization method used for deterministic, low-dimensional prob-
lems. DIRECT is attractive because it has proven global convergence and only one tuning
parameter, to which results are fairly robust. The only requirement of DIRECT is that the
function be Lipschitz continuous, i.e., the maximum rate of change of the function must be
bounded by a finite real constant. This requirement does not imply the function must be
linear, convex, or even differentiable (Jeffreys and Jeffreys [27]).

As of November 2014, Google Scholar lists 1,140 citations of the original DIRECT article
by Jones et al. [29]. DIRECT has been applied to many large-scale industrial problems,
including Zhu and Bogy [52], He et al. [21], Saber and Shaw [42], and Nicholas and Alderson
[39, 40]. While DIRECT is formulated to support deterministic optimization, it has been
successfully applied to stochastic problems with little or no modification. Di Serafino et
al. [13] use information obtained from a grid search to inform the progress of DIRECT in
detecting gravitational waves from coalescing binary star systems, ignoring the Gaussian
noise present in their objective function. Wachowiak and Peters [48] and He and Narayana
[22] use DIRECT for medical image registration in the presence of noise. Hemker and Werner
[23] develop a deterministic DIRECT method that performs well on noisy functions. Deng
[11] and Deng and Ferris [12] develop the only other known variation of DIRECT that is
specifically modified to support stochastic simulation optimization. They show their Noisy
DIRECT algorithm (also used by Esmaeilzadeh Azar and Perrier [4]) performs better than
deterministic DIRECT on a noisy function.

We develop a new stochastic version of DIRECT, called DIRECT-S, to search for good
solutions to stochastic simulation optimization problems while efficiently allocating a lim-
ited computational budget. Our algorithm iterates between a search phase (wherein we use
function evaluations to further explore the solution space) and a refinement phase (wherein
we use function evaluations to update Bayesian posterior distributions of existing solutions).
To improve the efficiency of our refinement phase, we incorporate the Optimal Computing
Budget Allocation (OCBA) method of Chen ([7, 8]). In numerical testing, we find our algo-
rithm can provide better performance than the black-box optimization method of Anderson
and Ferris [2] and both a näıve implementation of deterministic DIRECT and the Noisy
DIRECT algorithm of Deng [11] and Deng and Ferris [12]. Our algorithm is relatively simple
to implement and maintains the convergence properties of the original, deterministic version
of DIRECT.

This paper is organized as follows. In the next section, we briefly describe the origi-
nal, deterministic DIRECT algorithm. In Section 3 we describe our DIRECT-S algorithm
in detail. In Section 4 we provide computational results using benchmark problems and
compare our algorithm to other methods. In Section 5 we use our algorithm to design a
realistic wireless mesh network topology to support probabilistic customer traffic demand.
We conclude in Section 6 with recommendations for future work.
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Figure 1. DIRECT sampling and division.

(a) (b) (c) (d)

Note. DIRECT first samples from the center of the solution space (a) and along one-third of each dimension
(b). It then divides the solution space by placing the best solution (open circle) into the largest new hyper-
rectangle (c-d).

2. Original Dividing Rectangles (DIRECT)

We provide an overview of the original deterministic DIRECT algorithm based largely on
Nicholas [38]; the interested reader is referred to Jones et al. [29], Finkel [14], and Finkel
and Kelley [15] for more details. The algorithm is initialized by normalizing the original
hyper-rectangular solution space Ω to create a unit hyper-cube. Consider a simple two-
dimensional example in Figure 1. From this hyper-cube (in this case, a square representing
the entire two-dimensional solution space), the algorithm will iteratively sample selected
hyper-rectangles and then divide them into smaller hyper-rectangles. In the first iteration, it
will first sample directly in the middle of Ω (Figure 1(a)). Let M be the set of all undivided
hyper-rectangles, indexed by i = 1,2, . . . ,m (alias j). Let f(ci) denote the function value
of a particular hyper-rectangle i at center point ci, and let di denote the distance from
the center point to the corner of the hyper-rectangle, i.e., the size of the hyper-rectangle.
The algorithm samples the original hyper-rectangle at ci ± δer, where δ is one-third the
side-length of the largest dimension, and er is the rth unit vector; see Figure 1(b).

The algorithm then divides the solution space into smaller hyper-rectangles, hence the
name DIviding RECTangles. For each newly-sampled point, it places the best point (indi-
cated as an open circle in Figure 1) into the largest new sub-hyper-rectangle by first dividing
the original hyper-rectangle along the dimension with the best objective value (in Figure
1(c), the vertical dimension). The process continues for the dimension with the next best
objective value (in Figure 1(d), the horizontal dimension).

2.1. Selecting Potentially Optimal Hyper-Rectangles

The key element of DIRECT is determining those hyper-rectangles to sample. If the algo-
rithm always sampled all sub-hyper-rectangles, the search would forever remain global and
would never focus on a particular local optimum. To prevent this, the algorithm only samples
from those sub-hyper-rectangles it determines are potentially optimal. To aid in defining this
term, consider Figure 2 where the function objective values f(ci) are plotted against di for
various hyper-rectangles i∈M (represented as dots). The vertical axis represents goodness
with respect to local search: lower f(ci) values are closer to the actual global minimum. The
horizontal axis represents goodness with respect to global search: larger di values have more
unexplored territory in their respective hyper-rectangles, and thus in general have more
potential for improvement.

Let ∆s be the set of all hyper-rectangles of the same size d, for s= 1,2, . . . , S. Thus each
∆s contains all hyper-rectangles i with the same abscissa, i.e., the dashed boxes in Figure
2(b), for i = 1,2, . . . , Is. Let Φ(∆s) be the hyper-rectangle of ∆s with the best objective
value, that is:

Φ(∆s) = {i : f(ci)≤ f(cj) ∀i, j ∈ Is} (2)

depicted in Figure 2(c). Let Θ be the set of all Φ(∆s), that is, Θ =
⋃

s∈S Φ(∆s).
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Figure 2. Determining potentially optimal hyper-rectangles.

di

f(ci)

Δs

di

f(ci)

Φ(Δs)

(b) (c)
di

f(ci)

(d)
di

f(ci)

(a)

Note. Hyper-rectangles plotted as a function of size di (horizontal axis) and objective value f(ci) (vertical
axis) (a). Each ∆s contains those hyper-rectangles of the same size, i.e., within the same abscissa (b).
The Φ(∆s) of each ∆s has the best (i.e., lowest) objective value (c). The set Π of potentially optimal
hyper-rectangles are those points on the convex hull (open circles in (d)) that satisfy (3) and (4).

In modifying Lipschitzian optimization [24], Jones et al. [29] introduce a rate-of-change
parameter k̃ to vary the scope of search between global and local. The k̃ value changes
dynamically during the course of the algorithm to find the set Π of potentially optimal
hyper-rectangles, for i= 1,2, . . . , |Π|. A hyper-rectangle i is defined to be potentially optimal
if there exists some k̃ > 0 such that

f(ci)− k̃di ≤ f(cj)− k̃dj ∀j = 1,2, . . . ,m, (3)

f(ci)− k̃di ≤ f(c∗)− ε|f(c∗)| (4)

where c and f(c∗) are respectively the center point and objective function value of the
current best hyper-rectangle or incumbent solution, and ε is a small positive constant. The
first equation ensures that only those hyper-rectangles on the lower-right border of the cloud
of dots in Figure 2(d) (i.e., the convex hull) can be potentially optimal. The second equation
ensures that the lower bound f(ci)− k̃di of each potentially optimal hyper-rectangle falls
at or below the lower bound of the current incumbent solution by a nontrivial amount; this
prevents the search from becoming too local.

During each iteration, the algorithm will determine the set Π, sample each i∈Π, and then
divide each i ∈ Π into smaller hyper-rectangles. Since each hyper-rectangle i will become
smaller and sampling depends on the size of each dimension, no point in the solution space
is ever sampled twice. The algorithm will sample from at least one hyper-rectangle at each
iteration, so it will never “run out” of available hyper-rectangles. Typical DIRECT stopping
criteria include total function evaluations and DIRECT iterations.

2.2. Convergence

As Jones et al. [29] and Finkel and Kelley [15] show, the DIRECT algorithm is guaranteed to
eventually converge to the global optimum for a deterministic, Lipschitz continuous function.
Proof of this convergence relies on the selection of Π.

At each iteration, the Φ(∆s) from the largest ∆s (i.e., farthest to the right in Figure 4)
will be added to Π. Since any hyper-rectangle added to Π must then be divided and placed
into smaller ∆s, and the total number of hyper-rectangles within any ∆s are finite, each
hyper-rectangle in the largest ∆s will be sampled. As the algorithm progresses, every ∆s

will eventually be the largest, so every hyper-rectangle will be sampled as the number of
iterations approaches infinity. At any step of the algorithm, the set of all hyper-rectangles
precisely fill the original solution space, and the size of each hyper-rectangle necessarily
gets smaller, creating an increasingly dense set of sampled points. Hence, the algorithm will
eventually sample within an arbitrary distance of any point in the solution space, including
the global optima. Note that despite this guaranteed convergence, the algorithm is unable
to determine when it has achieved optimality unless it is provided additional information
(such as a lower bound).
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Figure 3. Refining the convex hull in the presence of noise.
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Note. In the presence of noise, the points of Figure 1 become ”blurs” due to the variance in each finite
sample (a). In (b), we expend additional function evaluations to increase the probability of selecting Φ(∆s)
within each abscissa s ∈ S. In (c), we expend additional function evaluations to increase the probability of
selecting the incumbent solution. These refinement actions reduce the size of each blur and may change the
convex hull, thus also changing the set of potentially optimal hyper-rectangles Π.

3. DIRECT-S

When using the DIRECT algorithm for stochastic problems, the points present in Figure 1

are more accurately represented as collections of points or “blurs” (see Figure 3), as the

true objective value of the center-point of each rectangle is subject to noise (we assume

normally-distributed noise). We call the application of the DIRECT algorithm to a stochastic

problem näıve if it simply calculates the objective function a fixed number of times for each

sampled point, uses the sample mean as an estimate of the true value, and contains no other

adaptation to account for stochasticity. In practice, the näıve method can perform well (see,

e.g., [13, 22, 23, 48]).

As Deng [11] and Deng and Ferris [12] observe, the näıve method may incorrectly select

the set Π, wasting computational effort searching undesirable portions of the solutions space.

It may also incorrectly select the incumbent solution c∗, as it has no mechanism for reduc-

ing variance and thus distinguishing between similar solutions. Their Noisy DIRECT algo-

rithm avoids this problem by using Bayesian posterior distribution information to iteratively

reduce the uncertainty of solution objective function values. They then conduct Monte Carlo

simulation to create different versions of Π, and compare the elements in these sets to an

original set. They increase the number of function evaluations until the randomly-sampled

sets contain a large enough (i.e., 90%) portion of the original set. They find their method

performs better than the näıve DIRECT method and the Snobfit (Stable Noisy Optimization

by Branch and Fit) solver of Huyer and Neumaier [25] on several noisy functions.

Our approach similarly uses Bayesian sample information, but we do not conduct Monte

Carlo simulation on the set Π. Rather, our algorithm adds several mechanisms wherein

we expend additional function evaluations and use a filtering technique to improve the

probability of correctly selecting Π. After conducting additional function evaluations during

the refinement phase, the objective function values of each hyper-rectangle are known with

better precision (i.e., less variance or smaller “blurs” in Figure 3(b)). This can change the

convex hull and cause the addition or removal of hyper-rectangles from the set Π (see

Figure 3(c)). We find that by refining Π in this manner, in practice we can better avoid

exploring fruitless portions of the solution space and provide more desirable solutions in fewer

function evaluations, even considering the additional function evaluations expended during

refinement. The following sections explain our two refinement mechanisms and filtering

mechanism in detail.
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3.1. Refining Each Abscissa

Our first mechanism for improving the performance of DIRECT-S is designed to increase
the probability of correctly selecting each Φ(∆s), i.e., we wish to reduce the “blur” of each
abscissa in Figure 3(a). In practice, this will increase the chances of correctly identifying
those i satisfying (3), i.e., those hyper-rectangles on the convex hull. We compute the approx-
imate probability of correct selection (APCS ) for each Φ(∆s), denoted APCS(Φ(∆s)), using
the Bayesian model of Chen and Lee [7]. If this probability is below a user-defined threshold
τabscissa, we expend Tabscissa total additional function evaluations, allocating Ns

i function
evaluations to each ∆s (where

∑
i∈Is(Ns

i ) = Tabscissa). We repeat until the threshold is met.
See the Appendix for a description of the method to calculate APCS and Ns

i using the
OCBA model of Chen and Lee [7]. Following is the pseudo-code for this method:

Algorithm Refine Abscissa:
Input : ∆s

1. while true:
2. Determine Φ(∆s) and calculate APCS(Φ(∆s))
3. if APCS(Φ(∆s))≥ τabscissa: break
4. else:
5. Calculate Ns

i for i= 1,2, . . . , Is from computational budget Tabscissa

6. Conduct Ns
i function evaluations, updating sample means and variances

7. Update Φ(∆s) and recalculate APCS(Φ(∆s))
8. end if;
9. end while;
10. return Φ(∆s)

3.2. Refining the Incumbent Solution

Though refining each abscissa generally increases the probability of correctly selecting each
Φ(∆s), this does not necessarily increase the probability of correctly selecting the incumbent
solution c∗. While c∗ will be among the Φ(∆s)∈Θ, we have not yet compared each Φ(∆s).
Refinement may be necessary to choose the correct incumbent solution with a prescribed
level of probability (see Figure 3(c)). Correctly selecting the incumbent will increase the
probability of correctly selecting only those hyper-rectangles satisfying (4). In practice, this
can reduce the effort expended searching less-promising regions of the solution space.

Following essentially the same method as Algorithm Refine Abscissa, this second
mechanism for improving the performance of DIRECT-S first calculates the approximate
probability of correctly selecting c∗, APCS(c∗), using the method in the Appendix. If this
value is below τincumbent, we expend Tincumbent function evaluations, allocated as Ns

i . We
repeat until the threshold is satisfied. Following is the pseudo-code for this method:

Algorithm Refine Incumbent:
Input : Θ, i.e., the set of all Φ(∆s), s∈ S
1. while true:
2. Determine incumbent c∗ and calculate APCS(c∗)
3. if APCS(c∗)≥ τincumbent: break
4. else:
5. Calculate Ns

i for i= 1,2, . . . , Is from computational budget Tincumbent

6. Conduct Ns
i function evaluations, updating sample means and variances

7. Update incumbent c∗ and recalculate APCS(c∗)
8. end if;
9. end while;
10. return incumbent solution c∗
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3.3. Filtering Based on Second Optimality Condition

Our third mechanism for improving the performance of DIRECT-S filters from Π those
elements i on the convex hull that do not have a sufficiently high probability of satisfying
(4), that is,

P{f(ci)− k̃di ≤ f(c∗)− ε|f(c∗)|}. (5)

We approximate this probability in the same manner as the probability of correctly select-
ing each Φ(∆s) (see Appendix). If this probability is at or above the threshold value τfilter,
we include the hyper-rectangle in Π. We do not expend additional function evaluations to
refine this probability, as we have found in practice that such effort is usually unproductive.
Following is the pseudo-code for this method:

Algorithm Filter:
Input : Set of hyper-rectangles i on convex hull; incumbent solution c∗

1. for i on convex hull:

2. if P{f(ci)− k̃di ≤ f(c∗)− ε|f(c∗)|} ≥ τfilter:
3. Π←Π∪ i
4. end if;
5. end for;
6. return Π, i.e., set of potentially optimal hyper-rectangles

3.4. DIRECT-S Algorithm

The following pseudo-code describes our overall algorithm:

Algorithm DIRECT-S:
Input : τ threshold values, ε value, maximum number of function evaluations maxIterations

1. Normalize solution space and create original unit hyper-cube i= 1
2. Evaluate f(c1) and add original unit hyper-cube to ∆1

3. while (iteration≤maxIterations):
4. previousIncumbent ←{}
5. while true:
6. Π←{}; Θ←{}
7. for ∆s ∈ S:
8. Φ(∆s)← Algorithm Refine Abscissa (∆s)
9. Θ←Θ∪Φ(∆s)
10. end for;
11. c∗← Algorithm Refine Incumbent(Θ)
12. if c∗ = previousIncumbent: break
13. else: previousIncumbent ← c∗

14. end if;
15. end while;
16. Calculate convex hull
17. Π← Algorithm Filter(i on convex hull; c∗)
18. for (i∈Π):
19. Evaluate f(ci± δer) and divide i into smaller hyper-rectangles
20. end for;
21. iteration ← iteration + 1
22. end while;
23. return c∗ and f(c∗), i.e., location and objective value of best solution found
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At each iteration, DIRECT-S enters the refinement phase (steps 5-15) to iteratively refine
each Φ(∆s) and the incumbent solution c∗ until previousIncumbent has not changed. In
step 16 it calculates the convex hull from Θ, and in step 17 it applies Algorithm Filter to
create the set Π. In steps 18-20 it samples and divides each i∈Π before beginning another
iteration.

3.5. Convergence

As with deterministic DIRECT, DIRECT-S will always sample from that ∆s comprising
the largest hyper-rectangles, and thus will eventually converge within an arbitrary distance
of any point, including the optimum. However, neither algorithm can guarantee that any
particular point is the true global optimum. In addition, due to the inherent uncertainty of
the objective function, our algorithm cannot guarantee that any point is a local optimum.
It may be possible to devise a sampling rule that can provide almost certain convergence,
following Kim and Zhang [30]. We recommend this for future research.

4. Numerical Analysis

We implement our algorithm in Python and use the mpmath library (Johansson et al. [28]) to
enable storage and calculation of arbitrary-precision floating point numbers. This is useful
in later phases of search when it is increasingly difficult to calculate differences between the
size, sample means, and sample variances of proximate hyper-rectangles.

DIRECT-S has a number of input parameters. A full sensitivity analysis is beyond the
scope of this paper; however in limited testing we find DIRECT-S is fairly robust to minor
changes in these values. Unless otherwise noted, we use the following input parameters:

• Initial number of function evaluations per point: 3
• τ thresholds: 0.7
• T during each refinement: 10 + number of hyper-rectangles being refined

By using only three function evaluations for the initial sample of a point, we maximize the
computational budget remaining for further search and the refinement process.

4.1. Visualization of Search Process

To provide insight into how DIRECT-S searches the solution space, we provide a visu-
alization of the algorithm computing a noisy function. We consider the two-dimensional
Goldstein-Price test function [18], adding normally-distributed noise of the form N(µ =
0, σ2 = 10). The optimal solution objective value is f(c∗) = 3, occurring at c∗ = (0,−1).
We compare DIRECT-S to a näıve implementation of deterministic DIRECT that sim-
ply samples each point three times, and to deterministic DIRECT in solving the original,
noiseless function. The results are presented in Figure 4, where the vertical axis indicates
the observed sample objective function value at each function evaluation. Deterministic
DIRECT – exploring the noiseless function – is able to expend all function evaluations on
searching the solution space and thus remains global. DIRECT-S clearly focuses on points
near the global optimum, while the näıve implementation of deterministic DIRECT main-
tains a global search without refining any existing solutions. Näıve DIRECT has a strong
tendency to get stuck in invalid local optima due its small, fixed sample size and inability
to reduce the sample variance of any solution.

After 3,000 function evaluations, deterministic DIRECT (without noise) obtains a solution
within 1.24×10−7 of the optimum. Näıve DIRECT becomes stuck in a false minimum, with
an observed function value of -3.667 and an actual (i.e., noiseless) value of 3.1696. DIRECT-
S obtains a solution objective value (2.917) within .083 of the true global minimum. Further,
the solution obtained by DIRECT-S is an order of magnitude closer (i.e., in Euclidean space)
to the actual global minimum solution point than that obtained by näıve DIRECT.
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Figure 4. Observed objective function values using
näıve DIRECT and DIRECT-S on deterministic and
noisy Goldstein-Price test function.
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Figure 5. Cumulative function
evaluations expended on search vs.
refinement using noisy Goldstein-
Price test function.
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4.2. Search Versus Refinement

As noted earlier, a fundamental tradeoff in stochastic simulation optimization is determin-
ing the amount of computational effort expended on searching the solution space versus
refining existing solutions. In DIRECT-S, this tradeoff is controlled by selection of refine-
ment threshold values τabscissa and τincumbent. To demonstrate this, we plot in Figure 5 the
cumulative number of function evaluations expended on refining solutions (vertical axis)
and sampling new solutions (horizontal axis) using the Goldstein-Price test function, for τ
values of 0.5, 0.7, and 0.9 and initial function samples of ten function evaluations. As the
thresholds τ increase, so too in general does the amount of effort expended on refinement.
Note that higher levels of noise will have the same effect, requiring additional computation
to reduce sample variance.

4.3. Performance Comparison

We compare the performance of DIRECT-S to the Noisy DIRECT algorithm of Deng and
Ferris [12]. We use the Goldstein-Price test function with normally distributed noise at σ2 =
10, running each algorithm for 3,000 function evaluations. Table 1 presents a comparison
of the incumbent solutions of DIRECT-S and Noisy DIRECT for algorithm iterations k,
where f(xk) and f̄(xk) are respectively the actual underlying objective function values (i.e.,
no noise) and the observed sample mean, and FN indicates the total number of function
evaluations. During the first four iterations, the algorithms obtain similar answers using
the same number of function evaluations since their search methods up to this point are
the same. Beyond the fourth iteration, the methods and obtained incumbents diverge. At
each step, DIRECT-S obtains a more accurate solution than Noisy DIRECT, and does so
in fewer total function evaluations.

We next compare DIRECT-S to Snobfit (Huyer and Neumaier [25]) and two versions of
Noisy DIRECT: the original based on the normal distribution and a second based on the
Student’s t distribution [12]. Each algorithm is run using 3,000 total function evaluations.
The process is repeated ten times; the average of the best obtained solutions are presented
in Table 2. Column FNi indicates the initial number of function evaluations per point, Obj
error is the absolute difference of the actual underlying objective function value and the
global optimum, and Distance is the Euclidean distance from the sampled point and the
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Table 1. Comparison of incumbent solutions
to Goldstein-Price test function at iteration k.

Noisy DIRECT DIRECT-S

k f(xk) f̄(xk) FN f(xk) f̄(xk) FN

1 200.54 201.03 15 200.55 197.9 15

2 200.54 201.03 21 200.55 197.9 21

3 14.92 12.68 39 8.92 10.67 39

4 14.92 12.68 63 8.92 10.67 63

5 3.64 7.16 81 3.65 3.27 69

6 3.64 7.16 111 3.65 3.27 87

7 5.84 -0.74 298 3.06 3.95 105

8 4.55 2.13 380 3.06 3.34 234

9 3.55 3.89 1270 3.01 2.82 306

10 3.55 3.72 3010 3.01 2.66 529

11 3.01 2.92 1201

12 3.01 2.92 3021

Note. At iteration k = 5 and beyond, DIRECT-S
samples different points than Noisy DIRECT and
is able to consistently obtain a better incumbent
solution.

Table 2. Comparison of best obtained
solutions to Goldstein-Price test function after
3,000 total function evaluations.

Algorithm FNi Obj error Distance

DIRECT-S 3 0.0569 0.0125

Noisy
DIRECT

Auto 0.3787 0.0288

Noisy
DIRECT(t)

Auto 0.3445 0.0283

1 2.4570 0.0694

Näıve 5 1.5045 0.0601

DIRECT 10 0.6119 0.0432

50 0.4073 0.0296

100 0.6474 0.0370

1 2.3231 0.0688

5 2.0332 0.0802

Snobfit 10 0.9761 0.0536

50 11.683 0.1805

100 44.456 0.5695

Note. DIRECT-S obtains a better objective value
than every method except Näıve DIRECT with 50
initial function evaluations, and also obtains a point
closer to the true global optimum.

Table 3. Comparison of obtained solutions for several test functions.

Algorithm A-F DIRECT-S

Problem k FN Obj error Distance k FN Obj error Distance

Rosenbrock 20 682 1.9 2.1 11 589 0.102 0.831

Camel 21 710 0.038 0.13 8 509 0.036 0.137

Powell 29 1932 0.11 0.4 6 683 0.106 0.123

Note. DIRECT-S finds comparable or better solutions than the method of Anderson and Ferris [2] in
considerably fewer function evaluations.

true solution. DIRECT-S obtains a more accurate solution than any method except Näıve

DIRECT with 50 initial function evaluations, though DIRECT-S is closer to the actual true

solution. Both Näıve DIRECT and Snobfit require more initial function evaluations than

DIRECT-S in order to obtain good solutions, a drawback if the simulation is particularly

expensive.

Next, we compare DIRECT-S against the method proposed by Anderson and Ferris [2],

referred to as Algorithm A-F. Like DIRECT-S, their method is useful for black-box optimiza-

tion and requires only that the objective function be Lipschitz continuous; they prove local

convergence of their algorithm in the presence of normally-distributed noise. A comparison

of their method and DIRECT-S is presented in Table 3 for three test functions (each with

added normally-distributed noise at σ = 0.1): the Rosenbrock function [36], the six-hump

camelback function Camel, and the Powell function [41]. In each case, DIRECT-S is able to

obtain a solution closer to the global minimum in considerably fewer function evaluations.
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Figure 6. Wireless mesh network operating area at Fort Ord, California.

(a)                                                         (b)

Note. An elevation contour map (a) and Google Maps [35] image (b) of the operating area.

5. A Computational Example: Wireless Mesh Network Design

We provide an application of DIRECT-S to demonstrate its ability to solve a realistic simu-
lation optimization problem. Wireless mesh networks (WMNs) are interconnected systems
of wireless access points (APs) frequently used to provide contiguous WiFi service across
a broad area, e.g., a campus or airport. Each AP provides wireless connectivity to nearby
client devices, including laptops and smart phones. Each AP also wirelessly interconnects
to other APs, creating a backhaul network used to exchange communications traffic. The
problem of WMN design (i.e., where to physically position APs) is difficult due to numer-
ous factors, including the nonlinear effects of radio propagation and the unpredictability of
client traffic demands.

We quantify the value of WMN topologies using the methodology and software of Nicholas
and Alderson [39, 40]. In their simultaneous routing, resource allocation, and coverage
(SRRA+C ) formulation, APs must be placed to simultaneously maximize client coverage
area and delivered network service. The software uses the Terrain Integrated Rough Earth
Model (TIREM ) [1] to accurately predict radio propagation effects through the atmosphere
and over rough terrain, and has been used to design actual WMNs [38, 39]. We modify their
formulation to consider stochastic network traffic, where each region receiving client service
has normally-distributed traffic demand. We then connect DIRECT-S to the SRRA+C soft-
ware to enable the algorithm to iteratively sample the SRRA+C solution space in pursuit
of optimal topologies.

We use this framework to design a WMN at Fort Ord, California using Cisco Aironet
1550 WMN APs [26]. We consider a rectangular operating area of 116 acres, consisting of
gently rolling hills, a large parking lot, a stadium, and several buildings (see Figure 6). We
consider networks for five and ten total APs; the location of each AP is described using a
northing and easting, so there are respectively 10 and 20 dimensions in these problems.

We solve using DIRECT-S with 8,000 and 16,000 total function evaluations for the five
AP and ten AP problems. We compare our results to näıve DIRECT and the noiseless
version of each problem in Figure 7. In both problems, DIRECT-S is able to find a more
desirable WMN topology than näıve DIRECT (note SRRA+C is a minimization problem).
In the five AP problem (Figure 7(a)), DIRECT-S is able to find a solution with an objective
value within 21% of the global optimum after 1,411 function evaluations; näıve DIRECT
becomes stuck in a local minimum at 1,113 function evaluations with a solution objective
value 47% greater than the global optimum. The ten AP problem (Figure 7(b)) is decidedly
more difficult to solve due to the greater number of dimensions. After nearly 16,000 function
evaluations, DIRECT-S finds a solution that is 12.3% closer to the global optimum than the
best solution found by näıve DIRECT, which falls into a local minimum after 4,503 function
evaluations.

Next we compare the topologies found using DIRECT on the deterministic version of the
problem (Figures 8(a) and (c)) and DIRECT-S on the stochastic version (Figures 8(b) and
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Figure 7. Comparison of optimization methods for designing wireless mesh networks.
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Note. DIRECT-S finds a better solution than näıve DIRECT for wireless mesh networks of five APs (a)
and ten APs (b).

Figure 8. Relative AP locations with predicted client coverage and network connectivity.

(a)                                             (b)                                             (c)                                             (d)
Note. The five AP network without (a) and with noise (b), and the ten AP network without (c) and with
noise (d). Shaded areas indicate inadequate client coverage; the width of each line indicates relative network
throughput between each AP.

(d)). Shaded areas indicate regions receiving less than adequate client coverage; the width of
each line indicates the relative predicted network throughput between each AP. DIRECT-S
finds topologies that are very similar to those found with the noiseless function.

6. Conclusions and Areas for Future Research

We demonstrate that the DIRECT-S algorithm is capable of outperforming the other known
stochastic implementation of the DIRECT algorithm. While DIRECT-S is fairly robust to
minor changes in input parameters, we recommend a thorough and systematic exploration
of the parameter space to determine if there are general trends that could inform the choice
of parameter values, or perhaps determine these values dynamically. For instance, it seems
sensible to gradually increase the refinement thresholds τ as the algorithm progresses toward
localized search.

One disadvantage of DIRECT-S is that it is practically applicable only to low-dimensional
problems because it suffers from the curse of dimensionality [6, 20]. Some research has been
done to overcome this via parallelization of the algorithm (see, e.g., Gablonsky [17], Griffin
and Kolda [19], Watson and Baker [50]), and by breaking the search space into smaller
regions (see, e.g., Tavassoli et al. [46]). This problem is exacerbated for stochastic functions,
as plural sampling of each point is required to account for noise.

While the algorithm is guaranteed to eventually sample within an arbitrary distance of
the optimal solution, it cannot provide a certificate of optimality for any particular solution.
Future research could devise a rule for selecting sample sizes that provide almost certain
convergence to a local optimum (see, e.g., Kim and Zhang [30]). An apparently achievable
step toward this proof would be the derivation of a more precise method of calculating the
probability of correctly selecting the convex hull.
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It would be interesting to compare DIRECT-S to other black-box optimization methods,
including compass search (see, e.g., Davidon [10], Kolda et al. [32], and Torczon [47]), mesh
adaptive direct search (MADS ) (Audet and Dennis [3]), the Nelder-Mead simplex method
(Nelder and Mead [37], Lagarias et al. [33], Barzinpour et al. [5], and Wang et al. [49]), the
methods of Lucidi and Sciandrone [34], the nested partitions algorithm (Shi and Ólafsson
[44, 45] and Shi and Chen [43]), and partition-based random search (Chen et al. [9]).
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Appendix

A. Calculating the Probability of Correct Selection

We calculate the probability of correctly selecting each Φ(∆s) following the Bayesian model of
Chen and Lee [7]. Let f(csi ) be the unknown true mean of ith hyper-rectangle within ∆s, for
i= 1,2, . . . , Is. We assume f(·) has a conjugate normal prior distribution, and the observed sample
performance estimates F (·, ω) are normally distributed and independent. The posterior distribution
of f(csi ) is

f̃(csi )∼N
(
f̄(csi ),

(σs
i )2

Ns
i

)
(6)

where f̄(csi ) is the sample mean of f(csi ), (σs
i )2 is the variance (estimated by sample variance in

practice), and Ns
i is the number of function evaluations of the ith hyper-rectangle. Let b be the

index of the Φ(∆s) hyper-rectangle, that is

b= arg min
i∈∆s

f̄(csi ). (7)

The probability of correctly selecting each Φ(∆s) is:

P{CS Φ(∆s)}= P{f̃(csb)< f̃(csi ), i 6= b}. (8)

As Chen and Lee [7] observe, this probability can be estimated for more than two designs using
Monte Carlo simulation, but this can be time-consuming. We follow their method and calculate the
approximate probability of correct selection (APCS) using the following product:

APCS{Φ(∆s)} ≡
∏

1≤i≤IS , i6=b

P{f̃(csb)< f̃(csi ). (9)

It can be shown this provides a lower bound on P{CS Φ(∆s)} [8]. A similar approach is used to
calculate the APCS{c∗} and to approximate (5).

B. Allocating the Computational Budget

We wish to allocate the available computational budget T among the given hyper-rectangles i∈ Is
in order to maximize the probability of correctly selecting the best (i.e., lowest) function value f(csi ).
Following Chen and Lee [7], the APCS Φ(∆s) for a given ∆s can be asymptotically maximized
according to the following OCBA rules for allocating the available function evaluations:

Ns
i

Ns
j

=

(
σs
i /δ

s
b,i

σs
j/δ

s
b,j

)2

, i, j ∈ {1,2, . . . , Is}, i 6= j 6= b, (10)

Ns
b = σs

b

√√√√ ∑
1≤i≤IS , i 6=b

(Ns
i )2

(σs
i )2 (11)

where Ns
i is the relative number of function evaluations allocated to hyper-rectangle i and δsb,i

is the difference in sample mean between hyper-rectangles b and i. The computational budget T
is allocated according to the ratio {Ns

b : Ns
2 : Ns

3 : · · · : Ns
Is}. Upon calculating this budget, we

conduct the given number of function evaluations and update the sample running means and running
variances using the method of Welford [51] and Knuth [31].
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[8] C.H. Chen, J. Lin, E. Yücesan, and S.E. Chick. Simulation budget allocation for further
enhancing the efficiency of ordinal optimization. Journal of Discrete Event Dynamic Systems:
Theory and Applications, 10:251–270, 2000.

[9] W. Chen, S. Gao, C.H. Chen, and L. Shi. An optimal sample allocation strategy for partition-
based random search. IEEE Transactions on Automation Science and Engineering, 11(1):177–
186, 2014.

[10] W.C. Davidon. Variable metric method for minimization. Technical Report 5990, Argonne
National Laboratory, Lemont, IL, 1959.

[11] G. Deng. Simulation-based optimization. PhD thesis, University of Wisconsin–Madison, 2007.

[12] G. Deng and M.C. Ferris. Extension of the DIRECT optimization algorithm for noisy functions.
In Proceedings of the 2007 Winter Simulation Conference, pages 497–504, 2007.

[13] D. di Serafino, G. Liuzzi, V. Piccialli, F. Riccio, and G. Toraldo. A modified dividing rectangles
algorithm for a problem in astrophysics. Journal of Optimization Theory and Applications,
151(1):175–190, 2011.

[14] D.E. Finkel. DIRECT optimization algorithm user guide. Center for Research in Scientific
Computation, North Carolina State University, 2003.

[15] D.E. Finkel and C.T. Kelley. Convergence analysis of the DIRECT algorithm. Optimization
Online, pages 1–10, 2004.

[16] M.C. Fu, C.H. Chen, and L. Shi. Some topics for simulation optimization. In Proceedings of
the 2008 Winter Simulation Conference, pages 27–38, 2008.

[17] J.M Gablonsky. Modifications of the DIRECT algorithm. PhD thesis, 2001.

[18] A.A. Goldstein and J.F. Price. On descent from local minima. Mathematics of Computation,
25(115), 1971.

[19] J.D. Griffin and T.G. Kolda. Asynchronous parallel hybrid optimization combining DIRECT
and GSS. Optimization Methods & Software, 25(5):797–817, 2010.

[20] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, volume 2. Springer Series in Statistics, 2009.

[21] J. He, A. Verstak, L. Watson, C. Stinson, N. Ramakrishnan, C. Shaffer, T. Rappaport,
C. Anderson, K. Bae, J. Jiang, and W. Tranter. Globally optimal transmitter placement for
indoor wireless mesh networks. IEEE Transactions on Wireless Communications, 3(6):1906–
1911, 2004.

[22] R. He and P.A. Narayana. Global optimization of mutual information: application to three-
dimensional retrospective registration of magnetic resonance images. Computerized Medical
Imaging and Graphics, 26(4):277–292, 2002.

[23] T. Hemker and C. Werner. DIRECT using local search on surrogates. Pacific Journal of Opti-
mization, 7(3):443–466, 2011.

[24] R. Horst and H. Tuy. Global Optimization: Deterministic Approaches. Springer, 1996.

[25] W. Huyer and A. Neumaier. Snobfit–stable noisy optimization by branch and fit. ACM Trans-
actions on Mathematical Software (TOMS), 35(2):9, 2008.

http://www.alionscience.com/en/Technologies/Wireless-Spectrum-Management/TIREM/
http://www.alionscience.com/en/Technologies/Wireless-Spectrum-Management/TIREM/


Nicholas: DIRECT for Stochastic Simulation Optimization
ICS-2015—Richmond, pp. 47–61, c© 2015 INFORMS 61

[26] Cisco Systems Inc. Cisco 1550 Series Outdoor Access Point Data Sheet. World Wide Web,
http://www.cisco.com/.

[27] H. Jeffreys and B. Jeffreys. Methods of Mathematical Physics. Cambridge University Press,
1999.

[28] F. Johansson et al. mpmath: a Python library for arbitrary-precision floating point arithmetic.
World Wide Web, http://mpmath.org/, 2013.

[29] D.R. Jones, C.D. Perttunen, and B.E. Stuckman. Lipschitzian optimization without the Lip-
schitz constant. Journal of Optimization Theory and Applications, 79(1):157–181, 1993.

[30] S. Kim and D. Zhang. Convergence properties of direct search methods for stochastic opti-
mization. In Proceedings of the 2010 Winter Simulation Conference, pages 1003–1011, 2010.

[31] D.E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms.
Addison-Wesley Professional, 2014.

[32] T.G. Kolda, R.M. Lewis, and V. Torczon. Optimization by direct search: New perspectives on
some classical and modern methods. SIAM Review, 45(3):385–482, 2003.

[33] J.C. Lagarias, J.A. Reeds, M.H. Wright, and P.E. Wright. Convergence properties of the
Nelder–Mead simplex method in low dimensions. SIAM Journal on Optimization, 9(1):112–
147, 1998.

[34] S. Lucidi and M. Sciandrone. A derivative-free algorithm for bound constrained optimization.
Computational Optimization and Applications, 21(2):119–142, 2002.

[35] Google Maps. World Wide Web, http://maps.google.com/, 2013.
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[44] L. Shi and S. Ólafsson. Nested partitions method for global optimization. Operations Research,
48(3):390–407, 2000.
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